首页> 外文OA文献 >Asymptotic theory of least squares estimators for nearly unstable processes under strong dependence
【2h】

Asymptotic theory of least squares estimators for nearly unstable processes under strong dependence

机译:几乎不稳定的最小二乘估计的渐近理论   强烈依赖的过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers the effect of least squares procedures for nearlyunstable linear time series with strongly dependent innovations. Under ageneral framework and appropriate scaling, it is shown that ordinary leastsquares procedures converge to functionals of fractional Ornstein--Uhlenbeckprocesses. We use fractional integrated noise as an example to illustrate theimportant ideas. In this case, the functionals bear only formal analogy tothose in the classical framework with uncorrelated innovations, with Wienerprocesses being replaced by fractional Brownian motions. It is also shown thatlimit theorems for the functionals involve nonstandard scaling and nonstandardlimiting distributions. Results of this paper shed light on the asymptoticbehavior of nearly unstable long-memory processes.
机译:本文考虑了最小二乘程序对于具有高度相关创新的几乎不稳定的线性时间序列的影响。在一般框架和适当的缩放比例下,证明了普通的最小二乘过程收敛于分数奥恩斯坦-乌伦贝克过程的功能。我们以分数积分噪声为例来说明重要思想。在这种情况下,功能仅在经典框架中具有与之无关的创新形式上的类比,维纳过程被分数布朗运动所代替。还表明,该函数的极限定理涉及非标准定标和非标准极限分布。本文的结果揭示了几乎不稳定的长记忆过程的渐近行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号